

MHD Energy Bypass Engine: A Progress Report

Unmeel B. Mehta

NASA Ames Research Center

David W. Bogdanoff and Chul Park

ELORET Corporation

NASA JPL/MSFC Twelfth Advanced Space Propulsion Research Workshop

University of Alabama, Huntsville, AL, April 3-5, 2001

- Motivation and Objective
- Equilibrium ionization versus nonequilibrium ionization
- National MHD Accelerator Facility

Electromagnetic Energy Management

Objective

 Hypersonic AYAKS-type concept evaluation, research, technology, and development

Output

- Assessment of MHD energy bypass engine concepts for space transportation
- National MHD Accelerator Facility

Outcome

- AYAKS-type concepts may contribute to reducing cost to access space and enable global reach
- Increased enthalpy levels for testing in the ARC's 20 MW arc-jet facility

Major MHD Issues

Air Ionization

- Equilibrium vs. nonequilibrium
- Electrical conductivity
- Power density requirement

Flight-Weight Magnets

- Superconductor technology
- Ultra-light-weight assemblies

Intelligent Controls

MHD Performance

- Accelerator performance
 - Optimum load factors
 - Losses in boundary layers
- Optimal design of MHD devices
- Generator-accelerator coupling

MHD Energy Bypass Scramjet Propulsion: Research, Technology, and Development

Contribute to NASA's goal, increase safety and reduce cost for space transportation, by significantly improving the scramjet performance and reliability

Schematic View of a Spaceliner

Propulsive Flow Path Along A Two-Plane Compression System

Shock waves and cesium or potassium seed assist in achieving equilibrium ionization.

Optimum Configurations

(V = 3.75 km/s, M_c = 1.5, H = 7 m, α_1 = 1/0.95, α_2 = 0.95)

Two-plane compression system

Overall Performance

(V = 3.75 km/s, M_c = 1.5, α_1 = 1/0.95, α_2 = 0.95)

MHD Devices

	Generator	Accelerator
Electrical conductivity	32.42 mho/m	35.87 mho/m
Ionization fraction	4.294 x 10 ⁻⁵	5.583 x 10 ⁻⁵
Magnetic field	12.74 Tesla	11.28 Tesla
Hall parameter (avg.)	3.524	2.319
Current density (avg.)	-6.6 x 10 ⁴ A/m ²	3.96 x 10 ⁴ A/m ²
Power transferred	6.85 x 10 ⁸ W/m	6.85 x 10 ⁸ W/m
Vehicle performance		
Energy bypass ratio	0.282	
Specific impulse	649.5 sec	

Four-Shock Designs

Typical Variation of Gas Temperature and Required External Power

External-to-Flow Power Ratio

External-to-Generator Power Ratio

Comparison of Specific Impulses

V = 3.75 km/s, q = 1 atm, M_c < 1.503, m_f = 378.3 kg/s/m, Vehicle height = 7 m, Comb. = 0.45 m MHD gen. length = 2.72 m, & MHD accel. length = 2.85 m

MHD Accelerator Facility Program

Objective ...

- National Facility for MHD-Bypass Engine Technology
 - Demonstrate MHD accelerator technology
 - Validate theoretical/computational predictive tools
 - Create National MHD Accelerator Facility

Approach ...

- Technology demonstration project s
 - Conduct a pilot MHD accelerator study in the EAST Facility at NASA Ames Research Center (ARC)
 - NASA MSFC Phase III FAST Track of Air Force Phase II SBIR with LyTEC LLC as prime contractor
 - Design and demonstrate a pilot MHD accelerator for 1MW arc-jet at MSFC
 - Design an MHD accelerator of 20MW arc-jet at ARC
- Develop National Facility at NASA ARC
 - EAST MHD Accelerator Facility
 - Arc-Jet MHD Accelerator Facility

MHD Accelerator in the EAST Facility: Objectives

Determine

- Back EMFs (no power input)
- Flow acceleration and joule heating
- Best load factor and Hall parameter attainable
- Measure true conductivity, with and without magnetic field

Investigate

- Shorting in parallel boundary layers due to locally high load factor
- Energy loss in perpendicular boundary layers due to cathode and anode fall heating
- Faraday connected channel (Hall connected channel possible later)

Electric Arc Shock Tube (EAST)

NOTES:

TUBE DIAMETER IS 10 CM.
LETTERS A THROUGH D DENOTE
SHOCK VELOCITY MEASURING STATIONS
UPSTREAM OF MHD TEST SECTION

NASA AMES EAST FACILITY SET UP FOR MHD EXPERIMENTS

MHD Accelerator: Assembly

Internal Views of the MHD Accerator

Assembly with Current Feed and Magnetic Field Current Conductors

Magnetic Field Current Feed

Magnetic Field Current Conductors

Pitot Rake

MHD Channel Operating Conditions

Static pressure: 0.5 - 1.5 atm.

• Temperature: 3000 - 6000 K

Magnetic field:
 1.5 - 4 Tesla

Mach Number: 2.0

Hall parameter: approx. 5

• Interaction parameter: (jBL)/(ρu^2) $\approx \Delta u/u = 0.2 - 0.5$

• Load factor: $E / (uB) = 2 \rightarrow 1.2$

 The MHD device can be run as an accelerator or a generator and with or without seed.

Diagnostics

Diagnostics

- Shock velocity
- Static pressures
- light emission at nozzle entrance and upstream of channel entrance to determine test time
- Impact pressure rake at channel exit
- Main electrode currents and voltages
- Floating potential voltages (for conductivity measurements)

Other possible diagnostics

- CCD camera movies may be taken to show oblique shock angles and thus, Mach number. Temperature may be obtainable spectroscopically from line intensity measurements.
- A data acquistion system with 48 channels and a speed of 1 MHz is available. Eight channels can be run at speeds up to 10 MHz and 36 channels at 1 MHz can be converted to 9 channels at 5 MHz, if required.

Conclusions

- The energy management with electromagnetic forces and facilitated by equilibrium ionization could enhance the performance of scramjet.
 - SSTO spaceplane
 - First stage of a TSTO spaceplane & globecruiser
- The MHD accelerator for the EAST Facility is built.